663 research outputs found

    Multi-user publishing in the Web : DReSS, a Document Repository Service Station

    Get PDF
    Many WWW servers contain information written by several authors. These authors either need an account on the server machine, and special permissions to create information in the server space, or else the Webmaster needs to put the information in that space or allow the server to point to the author's own space. We present DReSS, a system to enable authors to deposit (and update) documents on a WWW server, using standard WWW features only. Authors do not need login permission on the server machine, ftp upload access, or even electronic mail. As the documents live in the WWW server space there is no need for the server to be able to access documents outside its space. Thus, our system will work on even the most securely shielded servers (running in a chroot environment). DReSS consists of a set of CGI-scripts and two small auxiliary programs running on the client machine. It can be used with any (HTML-2.0-capable) WWW browser, and with any WWW server. DReSS does not use special features ..

    Open Corpus Adaptation++ in GALE : friend or foe?

    Get PDF
    "Open" has quickly become the hottest topic in any field related to information, including open government data, open learning resources, open user models, … Open Corpus Adaptation has been defined as the ability to perform adaptation to resources located anywhere on the Web. This leaves the definition of and control over the adaptation in a central place. GALE adds the ability to have the adaptation (definition) distributed over the Web. In this paper we describe how GALE achieves this functionality and we raise the question whether this is actually a desired feature or potentially a dangerous addition with unintended consequences

    Defining adaptation in a generic multi layer model : CAM: the GRAPPLE conceptual adaptation model

    Get PDF
    Authoring of Adaptive Hypermedia is a difficult and time consuming task. Reference models like LAOS and AHAM separate adaptation and content in different layers. Systems like AHA! offer graphical tools based on these models to allow authors to define adaptation without knowing any adaptation language. The adaptation that can be defined using such tools is still limited. Authoring systems like MOT are more flexible, but usability of adaptation specification is low. This paper proposes a more generic model which allows the adaptation to be defined in an arbitrary number of layers, where adaptation is expressed in terms of relationships between concepts. This model allows the creation of more powerful yet easier to use graphical authoring tools. This paper presents the structure of the Conceptual Adaptation Models used in adaptive applications created within the GRAPPLE adaptive learning environment, and their representation in a graphical authoring tool

    Defining adaptation in a generic multi layer model : CAM: the GRAPPLE conceptual adaptation model

    Get PDF
    Authoring of Adaptive Hypermedia is a difficult and time consuming task. Reference models like LAOS and AHAM separate adaptation and content in different layers. Systems like AHA! offer graphical tools based on these models to allow authors to define adaptation without knowing any adaptation language. The adaptation that can be defined using such tools is still limited. Authoring systems like MOT are more flexible, but usability of adaptation specification is low. This paper proposes a more generic model which allows the adaptation to be defined in an arbitrary number of layers, where adaptation is expressed in terms of relationships between concepts. This model allows the creation of more powerful yet easier to use graphical authoring tools. This paper presents the structure of the Conceptual Adaptation Models used in adaptive applications created within the GRAPPLE adaptive learning environment, and their representation in a graphical authoring tool

    MOT meets AHA!

    Get PDF
    MOT (My Online Teacher) is an adaptive hypermedia system (AHS) web-authoring environment. MOT is now being further developed according to the LAOS five-layer adaptation model for adaptive hypermedia and adaptive web-material, containing a domain -, goal -, user -, adaptation – and presentation model. The adaptation itself follows the LAG three-layer granularity structure, figuring direct adaptation techniques and rules, an adaptation language and adaptation strategies. In this paper we shortly describe the theoretical basis of MOT, i.e., LAOS and LAG, and then give some information about the current state of MOT. The purpose of this paper is to show how we plan the design and development of MOT and the well-known system AHA! (Adaptive Hypermedia Architecture), developed at the Technical University of Eindhoven since 1996. We aim especially at the integration with AHA! 2.0. Although AHA! 2.0 represents a progress when compared to the previous versions, a lot of adaptive features that are described by the LAOS and the adaptation granulation model and that are being implemented into MOT are not yet (directly) available. So therefore AHA! can benefit from MOT. On the other hand, AHA! offers a running platform for the adaptation engine, which can benefit MOT in return

    Design issues for general-purpose adaptive hypermedia systems

    Get PDF
    • …
    corecore